

The Use of Clementine at South West Water to reduce sewer flooding incidents

Tony Hoar - Business Performance Manager Ben Plastow - Data Quality Analyst

Copyright 2006, SPSS Inc.

Presentation Topics (Tony)

- Overview of South West Water (SWW)
- The Business Performance role
- Capital asset statistics
- The analysis weakness we faced
- Why we selected SPSS Clementine
- Why we selected DG5 as our first project

SPSS

Presentation Topics (Ben)

SPSS Directions User Conference

- The solution applied
- The implementation process:
 - Defining risk
 - Verifying model accuracy
 - Excel reports
 - SWWIM (digital mapping) integration
- The results achieved
- Future developments
- Current and Future projects

SPS^S

SWW Key Facts (1)

- Formed in 1989
- 1,330 employees
- Turnover of £351m in 2006-07
- Our customer base comprises:
 - 1.6 million residents
 - 750,000 billed customers
 - 8 million visitors

SPSS Direction

SPSS

SWW Key Facts (2)

- We provide:
 - Clean water to 97% of homes
 - Sewerage collection and treatment to 88% of homes
- The regulators:
 - The Water Services Regulatory Authority (OFWAT)
 - Environment Agency
 - Drinking Water Inspectorate (DWI)

The Business Performance Role

- Business Performance (BP) is part of the Asset Management & Development department in SWW
- BP undertake the following capital asset related activities:
 - Business efficiency investigations
 - Key Performance Indicator (KPI) reporting
 - Information provision
 - Data analysis
 - Dataset and data quality management
 - New business processes

SPS

Our Asset Base (1)

Clean Water

- 22 impounding reservoirs
- 32 treatment works
- 320 service reservoirs
- 15,000 km of water pipes
- 230 pumping stations

Waste Water

- 600+ treatment works
- 8,700 km of public sewers
- 800+ pumping stations
- 2,000 storm overflows
- 300,000 manholes

Copyright 2006, SPSS Inc

Our Asset Base (2)

- Gross replacement cost of capital assets is £8.4bn
- Over £2.5bn invested in our capital assets since privatisation
- Capital expenditure circa £200m per annum

Changing Information Requirements

The Rise in Maintenance Spend (%) 100% 80% 60% 40% 20% 0% Pre-K1 K2 K3 K4 (Plan) K5 (Estimate) Privatisation Period

■ Maintenance ■ Quality ■ Supply & Demand

1

0

SPSS

SPSS Directions

Why SPSS Clementine?

- The initial presentations by SPSS
- Subsequent contact and presentations
- A review of similar software
- Requirement for a non-specific predictive analysis tool
- The SPSS people we met
- Use of Clementine within the water industry

SPS

Why DG5 Sewer Flooding?

- 6,000 blockages per year
- 75 customer properties and 300 gardens flooded with sewage per year
- Lost Operational Performance Assessment (OPA) points
- Pollution of rivers and other water courses
- Risk of prosecution
- SPSS experience in this area

The Project Objectives

- The prime objectives are to:
 - Identify areas most at risk of sewer flooding, the underlying factors, and changing risk over time.
 - To better prioritise investigations, sewer cleansing, and repairs.
 - Reduce the number of sewer flooding incidents in the most cost effective way.
 - Increase confidence in the level of capital maintenance expenditure required.

Defining Risk: Fixed Factors

 Risk is based on the following fixed factors which do not change over time:

- Sewer assets (depth, criticality, capacity, length, quality)
- Sewer cleansing (historic build up rates of fat, silt, sand, & roots)
- Commercial food properties (restaurants, takeaways)
- Older properties (aged pre-1896)
- Socio-economic factors (rateable value of properties)

Defining Risk: Variable Factors

SPSS Directions

ser Conference

- And the following variable factors:
 - Previous internal flooding incidents
 - Previous external flooding incidents
 - Previous non-flooding blockages

Verifying Model Accuracy

SPSS Directions Usar Conference

One Year Variable Risk Model

Black diagonal line = base rate (model predicting outcome at chance level)

Red line (Best) = results if perfect model applied to data

L-Risk_Num = model results

I Matrix of Risk_Num by \$L-Risk_Num #4					
📴 File 📋 Edit 🐚 Generate 🔢 🗟 🗞					×0
\$L-Risk_Num					
Risk_Num		1 High	2 Medium	3 Low	
1 High	Count	728	285	6	
	Row %	71.443	27.969	0.589	
2 Medium	Count	241	782	99	
	Row %	21.480	69.697	8.824	
3 Low	Count	5	81	824	
	Row %	0.549	8.901	90.549	
Cells contain: cross-tabulation of fields Chi-square = 2,899.161, df = 4, probability = 0					
Matrix A	\ppearance	Annotations			

SPSS

One Year Model By Type Of Risk

SPSS Direction

- Internal flooding (23.1%)
- External flooding (20.3%)
- Fat build up rate (14.5%)
- Non-flooding blockages (10.5%)
- Sewer length and quality grade (6.4%)
- Socio-economic factors (5.5%)
 - Sewer Criticality Group A (4.8%)
 - Sewer capacity (length/depth) (3.9%)
 - Commercial food properties (3.7%)
 - Older properties (pre-1896) (3.6%)
 - Sewer depth (3.5%)

SPS

One Year Model: Leading Factors

Weighted Sewer Length Grade

SPSS Directions User Conference

Weighted Socio-economic Group

1

8

SPSS

SOUTH WEST WATER

Excel: Executive Summary Sheet

 Shows the main league positions including counts of number of internal, external and non-flooding blockages and recency

 $S \rightarrow s$

9

SPSS Directions

New Business Process

SPSS

SWWIM Quadrant Risk Analysis

Copyright 2006, SPSS Inc

2

1

SPSS Directions User Conference

SOUTH WEST WATER

SWWIM Legend (user guide)

Fixed Risk Quadrants

Variable Risk Quadrants

Measurable Business Success Criteria

- The following business results are expected:
 - A significant increase in the blockage detection rate (month on month) recorded through Work Orders.
 - A reduction in the level of quadrant risk scoring.
 - Evidence of a more proactive (and less reactive) approach to sewer maintenance investigations.
 - A reduction in the number of sewer flooding incidents in targeted quadrants.

SWWIM Variable Risk Analysis

ON OFF Hap: Default Mon drew Harbour Marina Flushin fusis Point FALMOUTH ergilliac nnis (

Variable risk increasing over time • = risk is greater as problems remain or are not fixed

SPSS Directions

Variable risk decreasing over time = risk reduces as problems are fixed by the maintenance teams

SPSS

Business Results Achieved

- More comprehensive and proactive approach.
- Sewage Maintenance Team Leader is co-ordinating the sewer maintenance plans using the output of Clementine Reports.
- Initial increase in sewer cleansing budget for 2007-08 by 34%.
 - This is an increase in proactive (rather than reactive) expenditure.
- Planned allocation of 2 inspection crews to carry out minor quick repairs to the sewer pipe system.

Future Developments

- Integration of rainfall data into the 3 variable risk models.
- Integration of customer address details to quadrants risk ranked in SWWIM.
- Ongoing monitoring of the quadrant league table reports.
- Close liaison with the Operations Department and the Contractors.

SPS

Clean Water Mains Bursts

- Project objective:
 - Predict the likelihood of a clean water main to burst and any potential consequence (including financial costs).

Key outputs:

- Likelihood of a pipe to burst (logistic regression).
- Predicted mode of failure (decision tree).
- Costs: (1) Cost of repair to fix the burst;
- (2) Estimated customer cost to the company (loss of supply, poor publicity, compensation).

SDS

Current and Future projects

Current projects (All assets & Clean Water):

- Mean Time Between Asset Failure
- Clean Water Network Mains Bursts
- Future projects (Clean & Waste water):
 - Clean Water Mains Deterioration
 - Sewer Pumping Station Failure
 - Sewage Treatment Works Failure
 - Sewer Network Asset Failure

SPS